hej is hosted by Hepforge, IPPP Durham
HEJ 2 2.0
High energy resummation for hadron colliders
Loading...
Searching...
No Matches
HEJ::MatrixElement Class Reference

Class to calculate the squares of matrix elements. More...

#include <MatrixElement.hh>

Public Member Functions

 MatrixElement (std::function< double(double)> alpha_s, MatrixElementConfig conf)
 MatrixElement Constructor. More...
 
Weights operator() (Event const &event) const
 squares of regulated HEJ matrix elements More...
 
Weights tree (Event const &event) const
 Squares of HEJ tree-level matrix elements. More...
 
Weights virtual_corrections (Event const &event) const
 Virtual corrections to matrix element squares. More...
 

Detailed Description

Class to calculate the squares of matrix elements.

Constructor & Destructor Documentation

◆ MatrixElement()

HEJ::MatrixElement::MatrixElement ( std::function< double(double)>  alpha_s,
MatrixElementConfig  conf 
)

MatrixElement Constructor.

Parameters
alpha_sFunction taking the renormalisation scale and returning the strong coupling constant
confGeneral matrix element settings

Member Function Documentation

◆ operator()()

Weights HEJ::MatrixElement::operator() ( Event const &  event) const

squares of regulated HEJ matrix elements

Parameters
eventThe event for which to calculate matrix elements
Returns
The squares of HEJ matrix elements including virtual corrections

cf. eq. (22) in [1]

◆ tree()

Weights HEJ::MatrixElement::tree ( Event const &  event) const

Squares of HEJ tree-level matrix elements.

Parameters
eventThe event for which to calculate matrix elements
Returns
The squares of HEJ matrix elements without virtual corrections

cf. eq. (22) in [1]

◆ virtual_corrections()

Weights HEJ::MatrixElement::virtual_corrections ( Event const &  event) const

Virtual corrections to matrix element squares.

Parameters
eventThe event for which to calculate matrix elements
Returns
The virtual corrections to the squares of the matrix elements

The all order virtual corrections to LL in the MRK limit is given by replacing 1/t in the scattering amplitude according to the lipatov ansatz.

cf. second-to-last line of eq. (22) in [1] note that indices are off by one, i.e. out[0].p corresponds to p_1


The documentation for this class was generated from the following file: